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Numerical solutions have been obtained for the steady two-dimensional flow of a 
viscous incompressible fluid in rectangular cavities by solving various implicit finite- 
difference approximations of the Navier-Stokes equations. The sets of implicit difference 
equations were solved using a recently introduced iterative numerical scheme called 
the strongly implicit procedure. The strongly implicit procedure was found to be an 
effective and economical numerical scheme for obtaining iterative solutions for sets of 
linear finite-difference equations. Various qualitative and quantitative comparisons 
have been made to determine the effects of Reynolds number and grid size on four 
different Unite-difference forms of the governing equations. The results show that one 
difference scheme was particularly accurate for Reynolds numbers and grid sizes which 
satisfy the Thorn and Apelt stability restriction. Streamline plots for Reynolds numbers 
of 100 and 1000 are shown. The behavior of the vortex center and secondary vortices 
with increasing Reynolds number is exhibited. The growth of the secondary vortices 
with increasing cavity depth is also shown. 

1. INTRODUCTION 

The fluid motion generated in a rectangular cavity by the uniform translation 
of the upper surface of the cavity is an example of a closed streamline problem. We 
consider this physical problem from the viewpoint of obtaining numerical solutions 
to the Navier-Stokes equations to describe the fluid motion. 

The cavity problem is of theoretical importance because it is a part of the larger 
class of steady separated flows which are reviewed and discussed in detail by 
Burggraf [I]. The features of the cavity flow are well known and others (Pan and 
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Acrivos [2]; Greenspan [3]; Runchal, Spalding, and Wolfshtein [4]; Kawaguti [5]) 
besides Burggraf have sought accurate numerical solutions to this problem over a 
range of Reynolds numbers defined as R = Vd/v, where V is the velocity of the 
top plate, d is the width of the cavity and v is the kinematic viscosity. The charac- 
teristics of the flow are as follows: The nature of the vortex formed in the cavity 
depends on the aspect ratio (cavity height to width ratio) as well as the Reynolds 
number. For an aspect ratio of unity and relatively low Reynolds numbers, the 
center of the vortex is located about three-quarters of the cavity height from the 
bottom and at midwidth. Most of the strength of the vortex is concentrated in 
the upper portion of the cavity. There are a pair of small counterrotating vortices 
of much smaller strength located in the lower corners of the cavity. As the Reynolds 
number increases, the vortex center moves downstream. With further increases 
in Reynolds number, the vortex center moves down and toward the center of the 
cavity (see Fig. 4). Also, as the Reynolds number increases, the calculated value 
of the vorticity becomes approximately uniform over the center of the vortex. 
A model proposed by Batchelor [6] is of importance in interpretation of the 
calculated results. Batchelor proposed that the limiting laminar flow case (v -+ 0) 
consists of a recirculating eddy having uniform vorticity over an inviscid core 
with viscous effects confined to the infinitesimally thin shear layers along the 
boundaries. 

For aspect ratios greater than one, the number of vortices in the cavity depends 
on the value of the aspect ratio. Visual studies by Mills [7] and Pan and Acrivos [Z] 
have indicated the behavior of the vortex pattern for different aspect ratios. The 
downstream corner vortex becomes larger with increasing aspect ratio. At an 
aspect ratio of two, the downstream corner vortex has grown until it occupies the 
entire lower portion of the cavity. The relative position of the pair of vortices 
depends on the Reynolds number. For an infinitely deep cavity, a series of vortices 
is generated. Since the vortex strength decreases sharply as the depth into the 
cavity is increased, not all of the vortices may be observed. Pan and Acrivos show 
the first three of the vortices at a Reynolds number of 3200. The remaining vortices 
are too weak to be observed at this Reynolds number. The development of the 
vortex pattern as the aspect ratio increases is not well understood in spite of the 
flow visualization studies of Pan and Acrivos and of Mills. 

The cavity-flow problem is of continuing interest because it offers a relatively 
simple model on which numerical techniques may examined. One of the main 
problems in doing numerical fluid mechanics is that the grid size must decrease as 
the Reynolds number increases so that numerical stability is obtained. Therefore, 
improvements and tradeoffs in the convergence criterion may be studied with 
relative ease using this model. Furthermore, previous investigators have left 
certain gaps in the understanding of the flow field. These gaps, and sometimes 
discrepancies, will be discussed as the development and comparisons are made. 
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2. SUMMARY OF OTHER INVESTIGATIONS 

Burggraf [l] did an extensive numerical study on the cavity-flow problem using 
a modified relaxation method. His calculations were for a square cavity in the 
Reynolds number range from 0 to 400 with mesh spacings from l/10 to l/40. The 
motion of the vortex center toward the center of the cavity, as the Reynolds number 
increases, is demonstrated. Burggraf also examined the behavior of the secondary 
vortices in the lower corners of the cavity. He noted that the secondary vortex 
pattern was viscosity-dominated in contrast with the relatively nonviscous primary 
eddy. 

Using the same relaxation scheme as Burggraf, Pan and Acrivos [2] obtained 
detailed numerical solutions to the problem of creeping flow in a cavity. The 
primary vortex at a Reynolds number of zero was found to be symmetrical for all 
cavity depths considered. They found a sequence of counterrotating vortices of 
decreasing strength and size in the immediate vicinity of the corner. The method 
of Moffatt [8] was used to calculate the corner vortices since these seemed not to 
influence the primary vortex once a converged solution had been obtained for it. 
Since Bruggraf had experienced numerical instabilities for R > 400, Pan and 
Acrivos did not attempt to extend their numerical solutions past the creeping 
flow problem. 

Pan and Acrivos also conducted a flow-visualization study of the cavity-flow 
behavior over a wide range of Reynolds numbers which for a square cavity went 
from 80 to 4000. The visualization studies produced flow fields consistent with the 
model of Batchelor [6]. The value of 4000 was the Reynolds number at which 
flow instability had begun to appear. 

Mills [7] examined the cavity problem at a Reynolds number of 100 at aspect 
ratios of 0.5, 1, and 2. Mills used central differences and applied Liebmann’s 
iterative technique to obtain his solution. The mesh system used was one in which 
the lines connecting the mesh points varied in the same ratio as the aspect ratio 
of the cavity. The convergence criterion of Thorn and Apelt [9], 

(h/d) < 40112/R, 

was used by Mills in his study and resulted in a horizontal mesh spacing of d/14. 
Mills conducted flow-visualization studies of the three aspect ratios which he 

also examined numerically. He noted good agreement in all three cases except 
that the corner vortices were not observed in the visualization studies. 

Greenspan [3, lo] considered the cavity-flow problem numerically by means of 
the generalized Newton’s method with overrelaxation. Greenspan was able to 
obtain solutions at Reynolds numbers of 200, 500, 2000, and 15,000 for a mesh 
spacing of l/20. For a mesh spacing of l/40, Greenspan determined solutions at 
Reynolds numbers of 50, 104, and 105. 
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Greenspan’s convergence criteria involved differences between successive iterates 
of both the stream function and the vorticity. Use of this kind of criteria does not 
necessarily specify convergence; it simply generates solutions which do not change 
appreciably with further iterations. Greenspan did not notice any secondary 
vortices for a mesh spacing of l/20 for any of the Reynolds numbers for which 
he made calculations. The secondary vortices should have been detectable at this 
mesh spacing as they were found by Pan and Acrivos to be sufficiently large. In 
fact, the present study has determined the presence of the secondary vortices at 
this mesh spacing. 

Another set of studies relating to the cavity flow problem was by Runchal, 
Spalding and Wolfshtein [4], Runchal and Wolfshtein [l l] and Gosman et al. [12]. 
This series of studies, all conducted by the Imperial College at London group, 
had two features not present in the previous investigations. One feature involved 
the use of a nonuniform mesh system to improve the accuracy of the solution. The 
other feature involved an evaluation of the wall vorticity which was an improvement 
over that used by previous investigators. 

The Imperial College group used an unidirectional differencing technique on 
vorticity gradients in such a way that the differencing was always backwards with 
reference to the direction of flow. The unidirectional differencing procedure allowed 
both the convergence criterion of Thorn and Apelt [9] and the improvement of the 
Thorn and Apelt criterion as used by Burggraf to be bypassed. The study by 
Runchal, Spalding, and Wofshtein [4] gave numerical results at Reynolds numbers 
of 1, 103, and lo4 but with a nonuniform mesh size of 13 by 13. These results agree 
quite well with earlier predictions and with the infinite Reynolds number model 
proposed by Batchelor. 

However, in another study published at about the same time as [4], Runchal 
and Wolfshtein [l l] reported results at a Reynolds number of lo4 and a uniform 
mesh spacing of 11 by 11. Thy obtained a primary pair of counterrotating vortices 
for a square cavity which is a flow field inconsistent with that calculated by the 
same authors [4] and by Greenspan and proposed by Batchelor. 

The contradictions developed by the Imperial College group and the extension 
of consistent and meaningful converged solutions past a Reynolds number of 400 
using an efficient iterative procedure have led the authors to reconsider the cavity- 
flow problem. We have chosen a recently developed and highly efficient numerical 
method (see Stone [ 131) known as the strongly implicit procedure (SIP) to calculate 
our solutions. 

3. THE GOVERNING EQUATIONS 

The pair of nondimensional differential equations governing the two-dimensional 
flow are written in terms of the stream function Y and the vorticity o. The differ- 

58Ibd3-5 
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ential equations are the Navier-Stokes equation (in vorticity-transport form) 
and the equation describing the relationship between Y and o. The latter equation is 

w = -v?P. 

The Navier-Stokes equation may be written in either convective form, 

(1) 

(l/R) V20 - V - VW = 0, (2) 

or in divergence form. 
(l/R) V2w - V * (WV) = 0. (3) 

In Eqs. (2) and (3), V is the velocity vector expressed in terms of Y and V is the 
gradient operator. Equations (2) and (3) are equivalent only for an incompressible 
fluid. Equations (1) and (2), or Eqs. (1) and (3), represent the system of equations 
to describe the problem. We have chosen the two different representations in order 
to determine which description generates the most accurate numerical solution. 

The cavity is made nondimensional by scaling with respect to the width of the 
cavity. The boundary conditions for a square cavity are 

Y = aY/ax = 0 on x=O,OBy<l, 

Y= aY/ay = 0 on y=O,O<x<l, 

Y= aY/ax = 0 on x=l,O<y<l, 
(4) 

Y= o,aul/ay = -1 on y = 1,0 < x < 1. 

These boundary conditions are the same as those considered by Burggraf [l] 
and Greenspan [3] and equivalent to those of Pan and Acrivos [2]. 

The finite-dilferencing of Eq. (1) and the linear terms in Eqs. (2) and (3) is 
straightforward. The derivatives at a mesh point are simply repl.aced by second- 
order correct central-difference quotients centered about the mesh point. The finite 
differencing of the nonlinear terms in either Eq. (2) or (3), however, presents 
greater difficulty. From the many possible schemes for differencing the nonlinear 
terms, we have selected the following two: (1) central differences using second- 
order correct difference quotients and (2) unidirectional differences using first-order 
correct difference quotients which are backward with respect to the local direction 
of the velocity. 

The second-order correct central-difference form of the nonlinear term in 
Eq. (2) is 

4.3 N %+1,3 - %-I.3 

2h ) + O(h2)] + vi.3 [ ( wi*3+1 ; w*s3-1 )] + Ws,] (5) 
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where h is the x-direction mesh spacing and k is the y-direction mesh spacing. 
From Eq. (3), we have 

for the second-order correct central-difference representation. In Eqs. (5) and (6), 
the velocities u$,~ and v~,~ are given by 

and 

vi,5 = Y&l,5 - yi+1.5 
2h + OW). t7b) 

The unidirectional-difference scheme gives rise to difference equations which 
are quite different in form from the central-difference representation. From Eq. (2), 
we have 

+ Oi.5 [ 
h%.j+1 + &%,5 + APi,i-1 

k + W-j 

for the nonlinear term. The divergence form from Eq. (3) gives rise to the nonlinear 
term, 

Al(u~) + A,ty)i,, + AdUw)i--l.j + O(h) 

+ A4(vW)t.5+l + A5tvWh.3 + A6(voh~i-l + o(k) 
k (9) 

In Eqs. (8) and (9), we have 

and 

Al = +1, A, = -1, A, = 0 when u~,~ -C 0, 

Al = 0, Aa = +I, A,= -1 when u~,~ 2 0, 
WV 

4 = +I, A6 = -1, A, = 0 when vi.3 -C 0, 

A4 = 0, As = +I, A,= -1 when vtSj > 0. 

In Eqs. (5)-(g), the term reading O(h”) indicates an error term of order h to the 
nth power. 



Although the two differential forms of the vorticity-transport equation are 
equivalent, their finite-difference forms are quite different. The difference equations 
for the convective form of the vorticity-transport equation contain product 
terms in which the velocity and vorticity are evaluated at different points. In the 
divergence form, the velocity-vorticity products are evaluated at the same point. 

Thus, there are four possibilities in representing the nonlinear terms of the 
Navier-Stokes equation in difference form. They are (1) central differences on the 
convective form (CDC), central differences on the divergence form (CDD), uni- 
directional differences on the convective form (UDC), and unidirectional differences 
on the divergence form (UDD). Each of these four possibilities will be considered 
in order to determine the optimum representation for the problem. 

The boundary conditions given in Eq. (4) are suficient for the analytical solution 
of the boundary-value problem. However, numerical methods require the speci- 
fication of boundary conditions for each of the dependent variables. Therefore, 
the vorticity at the wall is given in terms of the normal variation of the tangential 
velocity since the normal velocity is always zero for an impervious wall with 
zero normal velocity, 

0 I.0 = @@L), 9 (11) 

where V~ = tangential velocity, and I, = normal length coordinate, and w denotes 
wall. In terms of the stream function, Eq. (11) is written as 

Equation (12) is expressed in terms of a Taylor series evaluated at the first interior 
mesh point. This procedure gives the following as a set of third-order correct 
boundary conditions: 

%.l = 
-3*i 2 wi2 L-2 

k2 2 

-3*1 j WI j w&.,*j = -p - d 
2 

(i = 2, 3,..., Z on y = 0,O < x < l), 

(j = 2, 3,..., J on x= l,O<y<l), 

-34-l UiJ 3 
(13) 

qJ+l = .--p - --L- - - 
2 k2 

(i = 2, 3,..., Z on y = 0,O < x < I), 

Wl,i = 
-W2 j w2i L-d 

ha 2 
(.j = 2, 3 ,..., J on x=O,O<y<l). 

Third-order correct boundary conditions were preferred because of the increased 
accuracy obtained over the typical first-order correct boundary conditions. When 
convergence problems were encountered in a solution sequence, first-order 
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boundary conditions were examined to determine if a converged solution was 
obtainable at a lower order of error. 

From Eq. (13), we see that the vorticity at the cavity corners has not been 
specified. It follows from Eq. (11) that the vorticity, at points (x, y) equal (0,O) 
and (1, 0), has the value zero. The points (x, v) equal (1, 1) and (0, 1) are singular 
and the vorticity there is undefined. However, this dilemma does not affect the 
improvement of the dependent variables at interior mesh points. 

Previous numerical investigations [7, 9, 111 have shown that, if the new wall 
vorticity values, computed from the latest set of stream-function values, are used 
directly to compute new vorticity values in the interior,the computational procedure 
will not converge. An effective procedure for stabilizing the computations is to 
weight-average the new and old wall-vorticity values. Thus, the “new” wall- 
vorticity value used in the next iteration is defined by 

(14) 

where y = wall-vorticity weight-averaging coefficient (determined by numerical 
numerical experimentation). wzJau = wall-vorticity value computed from the 
improved $ values, w& = vorticity boundary value from the previous iteration, 
and ~7,:‘) = new vorticity boundary value used in the iterative improvement of 
the vorticity solution values at interior mesh points. Values of y were found to 
range from 0.4 to 0.6 with 0.6 being best. 

We have considered the cavity problem using the idea of an iterative numerical 
method developed by Stone [13] and known as the strongly implicit procedure 
(SIP). The SIP method is a procedure designed to reduce the computational effort 
required to solve the large sets of algebraic equations arising from the approxi- 
mation of a set of elliptic, multidimensional partial differential equations. The 
method is based on an inexact triangular decomposition of the coefficient matrix. 
Stone showed that the SIP method was three to five times more efficient than the 
alterating direction implicit (ADI) method for several model problems. Birkhoff, 
Varga, and Young [14] have also shown that AD1 is approximately four times 
as efficient as the extrapolated Liebmann method for small mesh sizes. 

4. RFZXJLTS 

In order to evaluate the difference schemes mentioned in the previous section, 
we have considered solutions to the cavity-flow problem for a range of Reynolds 
numbers. The convergence criterion used pertained to minimization of each mesh- 
point residual r for each difference equation. The residual minimization, while not 
exact, is an accurate criterion for solution as long as the coefficient matrix of the 
difference equation is not a nearly singular matrix. 
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FIG. 1. Streamline patterns and stream function values for flow in a square cavity, R = 100, 
h = l/50, CDD. 

TABLE I 

Percent Difference in Stream Function Values at the Midpoint Relative to the CDD Solution 
Value for Grid Size l/50. (R = 100, max I ri,j 1 < 0.25 x 10-3. 

Relative difference ( %) 

Difference 21 x 21 31 x 31 41 x 41 51 x 51 
scheme grid grid grid grid 

CDC 11.12 4.78 2.55 1.51 
CDD 2.06 0.648 0.206 0.000 
UDC 10.92 6.48 4.46 3.34 
UDD 13.81 11.20 9.20 7.70 

For R = 10, we found that all four of the differencing schemes yielded converged 
solutions for mesh spacings of l/20, l/30, l/40, and l/50. The CDD procedure 
generated solution values which were closer to the apparent limiting values at 
lower iteration counts than did the other three methods. The convergence criterion 
was r,, Q 10-4. However, the superiority of the CDD procedure over the other 



VISCOUS FLOW IN A CAVITY 357 

FIG. 2. Streamline pattern and stream function values for flow in a square 
h = l/SO, UDD. 
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FIG. 3. Streamline pattern and stream function values for flow in a square cavity, R = loo0, 
h = l/30, UDC. 
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three procedures is not clearly demonstrated at R = 10. At a Reynolds number of 
100, the superiority of the CDD procedure was clearly exhibited. The convergence 
to the apparent limiting value was much more rapid with decreasing mesh size 
for the CDD procedure. Figure 1 shows the streamline plot at R = 100 for the 
CDD method at a mesh spacing of l/SO. This plot shows the trend toward 
agreement with Batchelor’s model. If the CDD solution at a mesh spacing of 
l/50 is taken as the reference point, a comparison may be made of both differencing 
procedure and mesh size. This comparison is shown in Table I for the midpoint 
of the square cavity. Notice how close the l/20-spacing solution is to the l/50- 
spacing solution. The superiority of the CDD method is actually expected because 
it is the only one of the four methods which conserves vorticity in a local 
sense [16]. 

The next Reynolds number for which solutions were attempted was 1000. Both 
central-difference procedures failed to converge at this Reynolds number while 
both unidirectional-difference methods did satisfy the specified convergence 
criteria. The solutions obtained using the UDD method for mesh spacings of l/20 
and l/50 were consistent with Batchelor’s model while the UDC solution differed 
from the expected solution. The UDD solution is shown in Fig. 2 for h = l/50 
while the UDC solution is depicted in Fig. 3 for a mesh spacing of l/30. (The same 
form of result was obtained for UDC at h = l/20.) 

The UDD solution in Fig. 2, besides being consistent with Batchelor’s model, 
is similar in form to that obtained by Greenspan [3], by Runchal, Spalding, and 
Wolfshstein [4], by Gosman et al. [12], and by Torrance et al. [15]. The UDC 
solution (Fig. 3) obtained here is inconsistent with what is expected from Batchelor’s 
model and from the other cited investigations because there are two large vortices 
instead of one occupying the square cavity. 

We attribute the difference between Fig. 2 and 3 to be based on the different 
finite-difference representations. The discrepancy indicates that the UDC method 
differencing does not yield adequate results at a mesh spacing of l/30 and a 
Reynolds number of 1000. This difference in the form of the vortex pattern implies 
that extreme care should be exercised in the selection of the form of the governing 
differential equations and their finite-difference representation. The work of other 
investigators was done using either CDC or UDC procedures or a hybrid UDC- 
UDD method. (Runchal et al. [4] and Gosman et al. [12] did not actually use 
UDC but used a hybrid form of UDD and UDC.) The CDC calculations were 
restricted to Reynolds numbers of 400 or less. The UDC procedure was used by 
others when large Reynolds number calculations were desired. The Runchal- 
Wolfshtein study [ll] used a mesh spacing of l/IO with the UDC method to get 
a result similar to Fig. 3 for a Reynolds number of 10,000. Since this type of result 
is invalid, it appears that a mesh size of l/10 is too coarse for R = 10,000 in the 
hybrid method. 
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FIG. 4. Effect of Reynolds number on the location of the center of the primary vortex, CDD 
and UDD method. 
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FIG. 5. Velocity traverse along a vertical line through the vortex center. 

Figure 4 shows how the vortex center behaves as a function of Reynolds number. 
Note that the vortex center is moving toward the cavity center as the Reynolds 
number increases. This behavior is consistent with the Batchelor model for large 
Reynolds numbers. Figure 4 also shows a calculation at a Reynolds number of 
200 which was sought in order to have a more complete numerical description 
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of the flow field. The point indicated by the solid circle in Fig. 4 shows the UDC 
value at a Reynolds number of 1000. This point further indicates the deviation 
of the UDC solution from the trend suggested by Batchelor. 

Figure 5 shows the velocity traverse through the vertical center-line of the cavity 
for different Reynolds numbers. Calculations for the largest Reynolds number show 
that a constant vorticity core is developing (as predicted by Batchelor). 

Convergence was not attained at Reynolds numbers higher than 1000 for the 
unidirectional methods. However, other studies reported converged results at 
Reynolds numbers significantly above 1000. Greenspan [3, lo], Runchal et al. [4], 
Gosman et al. [12] all obtained solutions at a Reynolds number of 10,000 using 
either the UDC or hybird method. As already stated, the Greenspan results 
follow the expected trend; however, the convergence criteria is felt to be inadequate 
for accurate solutions. Greenspan also did not show the corner vortices which 
should have been detectable using his procedure. 

The results presented thus far in this study are felt to be closer to the exact 
numerical solution than those of [4] and [12] because of the convergence criteria 
employed herein. Our convergence criteria are based on residual minimization 
at each mesh point while the studies of [4] and [12] are based on finding values of 
Y and w such that (?P,+l) - !P))/?P+r < E. The idea of residual minimization is 
to take the algebraic difference equations in the form 

Ax = b 

and define the residual as 

r = Ax - b. 
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The residual at each mesh point is examined during the iterative process and when 
the maximum residual value is less than a prescribed small quantity (1O-4 for this 
study), we say that the numerical solution has converged. We feel that this residual 
minimization technique is superior to the method of relative differences in the 
stream function as used by [4] and [12]. The stream-function criterion is subject to 
a scaling problem in the vicinity of very small values of Y. Furthermore, the type 
of numerical technique used in this approach has been shown [13] to be vastly 
superior to the Gauss-Seidel method used in [4] and [12]. 

Figure 6 shows the variation in size of the upstream corner vortex with increasing 
Reynolds number The numerical results of Burggraf [I] and experimental results 
of Pan and Acrivos [2] are shown for comparison. Note the consistency of the 
numerical results with observations for Reynolds number greater than 500. 

Figure7showsthe formation of the secondary vortex as the cavity depth increases 
These calculations were done for the CDD method at a Reynolds number of 100 
and a mesh spacing of l/20. As the cavity depth increases from 1 to 2, the corner 
vortices grow in size, but remain relatively weak, and occupy the entire lower 
portion stream-function value does not change as the cavity depth continues to 
increase. 

5. CONCLUSIONS 

We have performed a systematic evaluation of four different methods of finite- 
differencing the Navier-Stokes equations. The numerical scheme used was the 
SIP method and was the same for each differencing method. 

The results obtained agree quite closely with those obtained by other investigators 
considering this same problem. The results indicate that, for a square mesh and 
Reynolds numbers of 100 and below, the CDD method generated the most accurate 
solutions. At a Reynolds number of 1000 for a square mesh, the UDD solution 
converged to a physically consistent solution while the UDC solution converged 
to an unrealistic solution. The UDC solution shows the affect that the form of 
the governing differential equations has on the numerical answer. 

The vortex formation for a cavity of increasing depth was calculated using the 
CDD method at a Reynolds number of 100. This set of calculations illustrate 
vividly how the corner vortices change when the cavity aspect ratio changes. 

We feel that, based on the systematic study of different differencing methods, an 
efficient iterative scheme, and the convergence criteria, the results presented here 
are the best numerical solutions presently available for the problem of a recircu- 
lating flow in a cavity. 



VISCOUS FLOW IN A CAVITY 363 

ACKNOWLEDGMENTS 

JDB acknowledges the fellowship support of the National Science Foundation and the Resident 
Assistantship program at NASA-MSC. We thank Herb Stone and Herb Weinstein of Esso 
Production Research Company for several helpful discussions. 

REFERENCES 

1. 0. BURGGIUF, Analytical and numerical studies of the structure of steady separated flows, 
J. Fluid Mech. 24 (1966), 113-151. 

2. F. PAN AND A. ACRNOS, Steady flows in rectangular cavities, J. Fluid Mech. 28 (1967), 
643-655. 

3. D. GREENSPAN, Numerical studies of prototype cavity flow problems, Comput. J. 12 (1969), 
89-94. 

4. A. K. RUNCHAL, D. B. SPALDING, AND M. WOLFSHTEIN, Numerical solution of the elliptic 
equations for transport of vorticity, heat, and matter in two-dimensional flow, Phys. Fluid. 
12 (1969), 11-21-11-28. 

5. M. KAWAGUTI, Numerical solution of the Navier-Stokes equations for the flow in a two- 
dimensional cavity, J. Phys. Sot. Japan, 16 (1961), 2307-2315. 

6. G. K. BATCHELOR, On steady laminar flow with closed streamlines at large Reynolds numbers, 
J. Fluid Mech., 1 (1956), 177-W. 

7. R. D. Mnrs, Numerical solutions of the viscous flow equations for a class of closed flows, 
J. Roy. Aero. Sot., 69 (1965), 714-718. 

8. H. K. MOFFATT, Viscous and resistive eddies near a sharp corner, J. Fluid Mech. 18 (1964), 
1-18. 

9. A. THOM AND C. J. APELT, “Field Computations in Engineering and Physics,” Van Nostrand, 
London, 1961. 

10. D. GREENSPAN, “Lectures on the Numerical Solution of Linear, Singular, and Nonlinear 
Differential Equations,” Prentice Hall, New York, 1968. 

11. A. K. RUNCHAL AND M. WOLFSHTEIN, Numerical integration procedure for the steady state 
Navier-Stokes equations, J. M. E. Sci. 11 (1969), 445-453. 

12. A. D. GOSMAN, W. M. PAN, A. K. RUNCHAL, D. B. SPALDING, AND M. WOLFSHTEIN, “Heat 
and Mass Transfer in Recirculating flows,” Academic Press, New York, 1969. 

13. H. L. STONE, Iterative solution of implicit approximations of multidimensional partial 
differential equations, SIAM J. Num. Anal., 5 (1968), 530-558. 

14. G. BIRKHOFF, R. S. VARGA, AND D. M. YOUNG, Alternating direction implicit methods, 
in “Advances in Computers,” (F. L. Alt and M. Rubinoff, Eds.), Vol. 3, 189-273, Academic 
Press, New York, 1962. 

15. K. TORRANCE, R. DAVIS, K. EXE, P. GILL, D. GUTMAN, A. HSUI, S. LYONS, AND H. ZIEN, 
Cavity flows driven by buoyancy and shear, J. Fluid Mech., 51 (1972), 221-231. 

16. R. D. R~CHTMYER AND K. W. MORTON, “Difference Methods for Initial-value Problems,” 
2nd Ed., Interscience Publishers, New York, 300. 


